Simulating FES Gait: Radial Basis Function Networks vs. Neuro-Fuzzy Inference and Recurrent Neural Networks with Plant Wear Factors

Francisco Sepulveda
Center for Sensory-Motor Interaction, Aalborg University
Fredrik Bajers Vej 7 D3, DK 9220, Aalborg, Denmark
e-mail: frs@smi.auc.dk

Abstract. Introduction: Radial Basis Function Networks (RBFNs) and an Adaptive Network-Based Fuzzy Inference System (ANFIS) were used for simulating the neuromuscular system during FES-induced gait swing. These methods were compared to previous research with recurrent neural networks that included indexes related to muscle fatigue and reflex habituation. Real clinical data were used both for training and for evaluating the various models.

Methods: Two RBFN structures were developed for simulating FES-based gait. The simplest structure was to map frame by frame input-output relationships, while for the other structure each input-output vector pair included angular data from one entire gait swing cycle. The model's inputs were pulse width values applied to the common peroneal and femoral nerves, respectively, while the outputs were predicted knee and ankle flexion/extension angles. Also, two independent Sugeno-type ANFIS models were trained for making frame-by-frame predictions of knee and ankle angles, respectively.

Results and Discussion: The worst results were obtained with the RBFN structure based on gait cycle to gait cycle predictions (as opposed to a structure dealing with intra-cycle, frame by frame predictions). The results for both RBFNs were also significantly worse than for the previously studied recurrent networks with wear factors. Poor performance (both in training and in testing modes) was also obtained with the ANFIS model. These observations differ from those of other groups, which may stem from the fact that in this study real, noisy data were used both for training and for testing the various models. The superiority of the recurrent networks probably comes from their ability to map dynamic data structures. Thus, it is suggested that data representative of input delays be used with the RBFN and ANFIS structures in the future.

1. Introduction
Simulation and control of FES-based gait must often be adaptive and include a model of the neuromuscular system’s non-linear, time-varying, and seemingly redundant characteristics. For control and simulation purposes, the models do not have to be descriptive of the systems internal elements. Thus, expanding on a previous effort [1][2], a simple approach is presented whereby Radial Basis Function Networks (RBFNs), and an Adaptive Network-Based Fuzzy Inference System (ANFIS) were used for simulating the neuromuscular system during FES-induced gait swing. These methods were compared to previous research with recurrent neural networks that included indexes related to muscle fatigue and reflex habituation. Real clinical data were used both for training and for evaluating the various techniques (obtained as described in [3]). A similar approach has been taken recently by another group [4], but the latter used data from a model to train and evaluate various networks.

This effort is a step towards a flexible platform based on machine-learning for simulated testing of FES regimes to restore locomotion. Further, the developed machine-learning structures can be easily incorporated into model-based control of FES for gait generation.

2. Methods
A. The RBFN Models
Two radial basis function network (RBFN) structures were developed for simulating FES-gait (Fig. 1). The RBFNs used Gaussian-Bar hidden layer transfer functions, which tend to work better with noisy data than regular Gaussian basis functions. Initially, learning was applied by increasing the size of the recurrent networks with wear factors. Poor performance (both in training and in testing modes) was also obtained with the ANFIS model. These observations differ from those of other groups, which may stem from the fact that in this study real, noisy data were used both for training and for testing the various models. The superiority of the recurrent networks probably comes from their ability to map dynamic data structures. Thus, it is suggested that data representative of input delays be used with the RBFN and ANFIS structures in the future.
data from one entire swing cycle (Figure 1b). The model’s inputs were pulse width values applied to the common peroneal and femoral nerves, respectively, while the outputs were predicted knee and ankle flexion/extension angles. Data from 13 strides were used for training the models while data from another 16 strides (following the above 13) were used for testing. The input and output data were scaled to the (0,1) range for training and testing.

B. The ANFIS Model

Two independent Sugeno-type ANFIS models with linear output functions [6] were used for making frame-by-frame predictions of knee and ankle angles, respectively. One separate ANFIS structure had to be used for predicting each of the two joint angles as the package used for the simulations allowed only single outputs (MatLab™ was used for the ANFIS simulations while C++ routines were written for the RBFNs and for the recurrent networks in [1] and [2]).

![ANFIS Model Structure](image)

The worst results were obtained with the RBFN structure based on gait cycle to gait cycle predictions, RBFN 1b (as opposed to a structure dealing with intra-cycle, frame by frame predictions, RBFN 1a). The results for both RBFNs were also significantly worse than for the previously studied recurrent networks with and without wear factors (RNN 2 and RNN 1, respectively) [1, 2].

![RBFN Structures](image)

Table 1 - Overall evaluation of the various models described here.**

<table>
<thead>
<tr>
<th>Model Type</th>
<th>MCRC</th>
<th>MAE</th>
<th>MTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBFN 1a</td>
<td>0.40</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>RBFN 1b</td>
<td>0.33</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>ANFIS**</td>
<td>0.48</td>
<td>0.09</td>
<td>**</td>
</tr>
<tr>
<td>RNN 1</td>
<td>0.79</td>
<td>0.07</td>
<td>91301</td>
</tr>
<tr>
<td>RNN 2</td>
<td>0.78</td>
<td>0.07</td>
<td>65650</td>
</tr>
</tbody>
</table>

** The ANFIS model did not converge to the above maximum allowed error even after 10³ training epochs (more than 30 hours in a dedicated 350MHz computer) at which point the maximum training error was at 0.27 for ANFIS 1 and 0.14 for ANFIS 2 (for all three training trials including initialization with synaptic weight randomization).

The simplified ANFIS model structure is shown in Fig. 2. Frame by frame pulse width values were used as inputs for both ANFIS structures. ANFIS 1 was trained to yield knee angle predictions, while ANFIS 2 was trained to predict ankle angles. Training of the networks was done by applying the hybrid learning technique described in [6] along with a C-means clustering algorithm to minimize the model’s size [7].

![ANFIS Model Structure](image)
Poor performance, both in training and in testing modes, was also obtained with the ANFIS model. Model training was particularly long (see ** under Table 1).

The above observations differ drastically from those of other groups (e.g., [4]), which may stem from the fact that in the present study real, noisy data were used both for training and for testing the various models. Also, portions of the training and test data contained pulse width saturation, a situation which may be encountered in a real control setting.

The poor ANFIS performance may also have resulted from the single-output, limited training approach taken, which was not the case for the RBFNs. However, in spite of the limited training in the ANFIS models, they were used for testing. This was done because ANFIS models are known to have good generalization properties even if poorly trained. Also (not shown in Table 1) the mean absolute error when training was stopped (at 10⁷ epochs) was below 0.05 for both ANFIS 1 and 2, which is an acceptable mean error for most applications. However, the large difference between the maximum (see ** captions below Table 1) and the mean training errors results from using real, noisy clinical data, which illustrates why training and evaluation of a model based only on data from another model [4] does not allow for a realistic assessment of a system's capabilities.

Finally, the superiority of the recurrent networks in [1, 2] probably comes from their ability to map dynamic data structures. Thus, it is suggested that data representative of input delays be used with the RBFN and ANFIS structures in the future.

4. Conclusion

RBFNs, ANFISs, and recurrent networks were compared in an effort to produce a model for FES-induced gait swing. RBFNs were found to yield the worst predictions, especially when the chosen network structure's single output vector contained angular data for an entire gait cycle. Also, serious limitations were found in the ANFIS technique, at least as applied here. It is suggested that data structures representative of input delays be used with the RBFN and ANFIS models in the future.

References

Acknowledgement

This work has been supported by the Danish National Research Foundation.