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Summary

Studies conducted by the UCLA Bistechnology Laboratory have
revealed that @ human operator is unable to provide the inforzmation
rates reciuired for adeguate prosthetic performance, In coping with
this problem, a subsystem which containg ancillary control informatign
with the capabilities for controlling the gutput device is added to the
contrel loop. In such configurations the decision load of the operstor
is shared between him and the system. The control information load
then is distributed to a number of lower level processing subsystems.
ldeally, with such aiding subsystems, the operator acts principally in
the role of a goal setter, action initiator, and medulator, spproach
has partly been realized in such aids as predictor displays, autopilots,
tape programmed arm aids and, recently, supervisory control techni-
ques. The approach soggested here presents a concept of adaptive
aiding which provides the aiding subsystems with the abllity to respond
to envircomental changes and operator skills. These properiies are
aclueved by the construction of a task deciston model which models
the: operational environment in terms of its states and operator response
to it. Having such a model empowers the alding subsystern to respond
to the environment quicker than the operator would respend alone.
The approach promises solution to the information problem but at the
expense of increased hardware requirements.

Introduction

Human control of a multidimensional manipulative device
which mimics and functiopally substitutes for the human arm
requires an intricate comnmunication and control system. In control-
ling the system, the operator acts as an infarmation processor, limit-
ed by his inherent psycho-physiological characteristics such as band-
width, fatique limits of the muscular system, and ability to main-
1ain perceptual vigilance. Studies conducted by Freedy [3] indicat-
ed that the information load of the operator necessary in control
of prostheses and orthoses exceeds his channel capacity. In ing
'mli the problem, a subsystem which contains ancillary control in-
formation with the capabilities of controlling the prosthesis can be
added to the control loop. Ideally, with such a system the operator
acts principally in the role of a goal setter, action initiator, and
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modulator, This approach has been partly realized in such aids as
Predictor displays, auto-pilots, tape programmed machines, and the
ike. A unique example related to remote handling equipment is
the Case-Western Reserve University "Arm-Aid” which certain

motions prep so that a handicapped operator can select
a repe[rto]ry of desired functions with a minimuem of input inform-
ation [11]. - - -

A more recent approach is represented in the concept of
“Supervisory Control” developed by Sheridan and his associates
at MIT. [10] for use with remote manipulators, The system
employs a computer able to generate patterns of movement u
operator command, via teletype. To date, however, such aidi
techniques have emphasized equipment performance independently
from operator performance, utilizing rigid task programs inde-
pendent of operator skill; that is, there has been no intent to design
a sg'stem that optimizes the decision load sharing between the man
and the machine he is cuntmlljng;

The a];zﬁznach that is taken here presents a concept of adapt-
ive aiding, that provides the aiding mechanism with the ability to
respond to variations in the environment and in the operator skill,
“The approach is based on the phenomenon that movement patterns
of a manipulator simulating a normal arm in bounded _sgace of

ration are non-tandom [17]. There appear to be favored paths
of movement which are determinad by the opiimization criteria
of the operator, the physical structure of the output device and the
environment so that with manipulator in a given state certain
future states are more likely than others. If an aiding subsystem
which could acquire and learn these patterns is realized, it could
drive the prosthesis along these patterns autonomousty unless
corrected. The decision load associated with the correction would
be less than is normally encountered by the operator {5).

Diagramatical representation of such a system is shown in
Figure 1.

Thomin
Cperator.

Fig. 1. The alded system )
The m.'ltg;lt device is comtrolled by a Probabilistic Movement

Generator {PMG) as well as by the operator, who acts as a control-
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ler-inhibitor. Initially, the output device wilt be totally controlled
by the operator, while the PMG acts as a passive observer. As ope-
ration continues and the patterns are acquired by the PMG, it will
gradually transform from a passive observer to a controller.

Under this configuration the control will be distributed to
three loops: (1) a local reflex loop which will comtrol the mani-
pulation in response to the environment, (2) an operator sub-loop
which will respond to operator signal and environmental inform-
ation, and (3) a major control loop which operates under direct
operatar control. This arrangement provides three levels of control
and distrbbutes the information load between the two subloops
and the operator.

Realization of the PMG is based on proposed models of learn-
ing such as the Percveptrom [9], Conditiomal Probability Computer
(TUitley, 1959) and application of established theories of machine
learning [8], [6], [2]?%1], together with techniques of computer aid-
ing in remote manipulators control [4].

Method of Approach

The Probabilistic Movement Generator is the basic feature
which provides adaptive aiding to the operator (See Figure 1}, It
acts as a subsystem whose putput is a vector describing the. future-
state of the manipulative device; mathematically its information
processing capability can be described as the process of mapping
g set of inputs [X, ¥, E] onto an cutput a, i=1,2,... k... R X re
presents tﬁg present state, ¥ is the operator response and E is a
matrix representing the environmental state. The environmental
state consists of a map of the work space representing location of
objects and obstacles. The output o, ¢=1,2,... k... R which is
generated by the PMG, is selected from ihe total decision space of
al! possible R outputs. The system-decision, & is obtained by an
algorithmic operation, as shown in Eguation (1). |

a=f{X,E Y, F) {1}

where P is a matrix whose elements represent the experience
acquired by the subsystetn. The basic requirement for an optimnal
function will be to select the most likely output and minimize
machine decision error. .

The vatues of the vectors X and ¥ represent a set of events
occurting jointly and is defined as-the input pattern (See Figure 2).

In applying the concepts discussed to adaptive prosthesis con-
trol systems, the following limitations were set in arder to allow
realization of a feasible concept: )

1. The space of movement of the cutput device is divided by
a three dimensional grid into n discrete subspaces. Each subspace
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constitutes a deciston category in the decision space. When the
operator directs the device to a certain position the PMG interprets
it as a decision outcome classified by the subspace which the arm’s
end point has reached, When the PMG assumes control over the
device it can direct it only to one of n dicrete locations defined
by the grid,

2, The input to the system consists of a binary vector of m
components, Each component describes a certain event on which
the decisicn outcome is ﬁs&d The input vector components contain
the information concerning the presentmixﬁiﬁon of the arm, its
most recent past position, environmen information, etc. For
example, describing a position in space in a binary vector can be
accomplished by a one-to-one mapping of al! possible subspaces
into the i'® component in the vector. Suppose we have a space with
three subspaces and the manipulator is located at subspace number
three. Then the binary vector representation of the manipulator

state will be:
0
1

Using these limitations provides simplicity in mathematical
manipulation, allows fast computation, and minimizes the computer

memory mze./_
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Flg. 2. Pattern classifying system

The selection of the specific output from the decision space
involves a process of lPam;f:rn classification, where a specific input
configuration is classified into ax category out of a populational R
choices. The operation of classification adopted here is based on
the Maximum Likelthood Decision Principle and is discussed in [8].
Using this principle, the decision depends on the conditipnal pro
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ability function P (a|X.) A decision theoretic rule can be con
structed by introducing the concept of loss function. A loss func-
tion X (aa;} represents the Ioss incurred when the decision system
places an input pattern belonging to output category a; into output
category a;, i=1,2,... k... Rand §=1,2,... k... "R.' It assigns a
cOSt 1o an incorrect decision. Suppose that the subsystem continu-
cusly generates the wrungeoutput. It will decide that all patterns
belong to category a, The conditional average Ioss due to this
decision palicy will be:

R
Lx (a) = 2 X(a |8} P (3] X) (3)
i=1

Using the above expression the conditional average loss can
be calculated for all possible values of a, i=1,2,... &,... R. The
loss will be minimized if the subsystem selects a specific a for
which L.(&) is minimum.

The process of selecting future position by the PMG can be
surnmarized as follows:

1. The pattern of inputs which contain the present position,
and the past position of the manipulator, the environmental state
and operator response cues is presented to the decision subsystem.

2. The subsistem calculates the average conditiomal loss for
all @, i=1,2,... k... R.

3. The subsystem decides whether or not the i pattern X
belongs to the category e for which Li(av) =L.(a) for i=1,2,...
k... R, where a is defined to be the category which yields the
minimum loss.

Using a symmetrical loss function {(see Appendix A), a deci-
sion-theoretic approach leads to a decision algorithm which simply
requires the ca tion of the product:

P (X[a) P (a)) (4}

for each event, a, and selects the &™ value which maximizes
Equation (4). Such a decision strategy will minimize the loss and
minimize the probability of an erroneous decision.

Application of Equation (4) toward classification in the deci-
sion space of the prosthesis, assirming that all events are indepen-
dent, yields the following mathematical procedure:

Select
Maximum
oW S,
M, of

filog P|-[X+log (1—-P)]-[1-X]+]log P (a)} {53
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where log P is a matrix whose elements are the | ithm of the
conditiona! probabilities and log P{a)) is the logari of a priori
probabilities. The decision subsystemn {(PMG) calculates the abave
£ sion and simply selects the i component of the ocutput
wgm value is maximum. A diagramatic presentation of the deci-
sion process is shown in Figure 3. The data for this operation iz
accumulated by the log P matrix which contains a measure of the
experience acquired by the PMG in observing the human operator.
The P = (log P} matrix can be written as:

Py P Py,
Py - - -
iogPt=) - - - =« L : {6

. .
* Pmn

where Py=log P(X;|a)), or the logarithm of the probability that
even X; ocours given that a4, occurred. The number of rows in the
P matrix corresponds to the number of decisions that can be made.

The values of the matrix eletents are comtinuously adjusted
and are the adaptive properties of the system.

These probability values are obtained by a process of training
in which the decision subsystem (FMG) ."u{iserve's," the operator
and hiz manipulative device, At this stage a library of log P values
can be compiled to provide the decision data. Assuming that the
inpuf pattern consists of a set of discrete inputs, determination of
the conditional probability can be obtained as follows:

Number of times the prosthesis reached position &
when the input X; was presented. N

P (X)la) = : : -
Total number of times the position a, was occupied.

The @ priori- probability of & can be obtained as follows:
P(a) = Number of times a previously occurred -
Total number of trials — @

Since finite counters are used for the type of calculation given
in {7} and (8), saturation may occur and the value of the probabili-
ties will converge to a fixed level. In order to overcome this, the
concept of forgetfulness is introduced. For example: If within a
certain number of tasks a certain imput pattern, X,, occured with-
out giving rise to an event (&) then the value of the conditional
probability P {X|a;) can be reduced by a certain level. Under such
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a configuration, the decision Emcessmr is subjected to repeated
parameter adjustment, and is thus able to change decision strategy
with time and any environmental changes that may occur.

=

}I.Iau RN

1 OUTPUT-1

L
; I CATEGORY
L3 -
E | T 1og (1-x ) (1P )
i
. A
I ) — T — —
z
g MAX-
X el
K ll, log (x, Py} 7 IMUM
. | OUTPUT-2
INFUT
VECTOR | I CATETORY
s e s
3 Lt it xlbll Pzi’ SR~
1 ECTOR
y3 |
2
i
. OUTFUT-K
§ o — ]
. CATEGORY
.
.
ITI.
CUTPUT-1
ks i -

CATEGORY
E}lnuu-ulbi:-:-'ub

=

Fig. 3. Maximum likelihood decision mechanism

System Operation and Implementation

The overall organization of the Probabilistic Movement Ge-
nerator is shown in the flow diagram in Figure 4.

The system reads out the input pattern and decision proced-
ure. It selects the future position. The decision undergoes a level
of confidence test where the absolute "quality” of the decision is
checked. This process is accomplished by comparing the value of
the M, to the preset threshold level, 0. If the M. selected is such
that:

M, =8
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then the PMG decision is accepted, Fuﬂowing decision acceptance
the system checks the environmental state by scanning a stored
three dimensionzl map of the environment. If the selected state is

BEAD INPUT PATTERN

ENVIRCHNMENTAL MAY
AFPLY MAXIMUM LIKELIBOOD "
DECIAICN SYATEM -
FROCEDURE BELECT A, s

CONFIDENCE" l
LIGHT

UENERATE

CPFERATOR
CONTROL
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MATERIX

BEWARD FUNIEH
P MATRIX P MATRIX

Mg 4. Flow diagram of the experimental systein

unoccupied, i. e., does not contain obstacles, the decision is accepted.
If the decision outcome agrees with the operator’s wish the PMG will
drive the arm to its terminal state. Under such a decision outcome
the Wﬂgms of the P matrix associated with this decision are
rew . It the PMG does not generate the correct decision and
the operator has to take over control from the PMG, the P matrix
elements associated with this decision will be punished, i.e., their
value will be lowerad.
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If the decision made by the Maximum-Likelihood processor
does not possess the required level of confidence, the control of
the prosthesis is transferred to the operator, by signaling to him
through a visual display. The operator-manipulator control system
is shown in Figure 5. The communication links between the various
subsystems are presented and the data mode, analog or digital, is
marked. The present experimental system consists of the IBM
1800 process control computer and a set of analog to digital and
digital to analog converters. The manipulator control system con-
sists of a control logic system and three parallel rate and/or po-
sition servo loops. The function of the control logic subsystem is
to interpret operator responses and to decide whether to give con-
trol to the manipulator or to give the operator direct control over
the device. The operation of the system can be summarized as fol-
lows: Suppose the prosthesis is at point a, in space and operator
desires to move to a.. Initially the operator activates his controller
as if he has direct rate control over the output device. The control
logic will feed a signal into the First Priority Interrupt Unit, which
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Fig. 5. Complete system

starts the computer control process. The computer will record
the position of the arm, operator initial control vector, claw po-
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sition, etc,, and will construct an input pattern for the decision
process, The PMG subsystem selects the most probable position
and directs the menipulator to that point. An incorrect decislon b
the syatem will be corrected by the operator and computer con
will be cut off. As soon as the task is completed a task completion
signal will call the computer to start the P matrix update process,
i. €., reward or punish. In order to permit an adequate man-machine
mierface the computer decision process must be shorter than the
operator’s reaction time,

One of the problems associated with the system implement-
ation is imposed by the constraints of the finite speed and me-
mory of a particular ;firoc:ess control computer. These constraints
affect the capability of the proposed system as an efficient aid to
the human operator since they depend on the accuracy and
of the PMG. The accuracy and speed of the PMG is determined by
the size of the available computer memory and its speed of oper
ation. Suppose that the space of movement of the manipulator
was divided into infinitesimally small subspaces such that the PMG
decision outcome could discriminate between any two adjacent
subspaces. Under such a configuration, the mumber of rows in
the P matrix would be infinitely large. Thus an infinite computer
memory would be required. :

It is also evident that the decision process in an infinite mat-
rix would require an excessive amount of time. Given the range of
possible conditions, the prosthesis would be able to reach almost
any point in space at the cost of time. Let us consider the reverse
approach; suppose the space of movement is divided by the PMG
decision system. into a very small number of coarse subspaces.
Under these conditions the number of rows of the P matrix
required to store the decision data will be relatively small and
computer rnemory requirement and decision time would be small.
Such a system would not provide much assisfarice to the operator.
It can be seen rhat there i1s a direct . trade-off between system
sophistication and computer memory sizé and time delay, High
precision of output requires a large memory and may require g
relatively long response time. Conversely low precision output
requires a relatively small memory size and a short response time.

The problem can be solved empirically by performing a set
of experiments which will provide data ror sciccting the best com-
bination of position precision and speed to complement human

tor information deficiencies. In such experiments a variety
of output precision levels and time delays can be rested in conjunc-
tion with variations of control mode. For example, it might be
preferable to provide the operator with a fine rate control while
the computer or the PMG would operate in end-point position con-
trol. The PMG can direct the manipulator for gross movements
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while the :ipumtur controls the arm for fine movements. A set of
systern evaluation experiments is planned upon the completion of
computer programs and sysiem construction.

Practical Implications

The practical aspect of the system for patient rehabilitation
is not as remote as one might assume. This is basically due to the
i:rnvisiun that a ''special purpose” type aiding systern can be rea-
ized with a much smaller memory requirement than that of the
experimental system. Once the significant parameters associated
with the movement space of prosthesis operation are defined, the
Probabilistic Movernent Generator could be mi::ro-prutﬁgmmnd for
its specific structure. For example, when an arm prosthesis is given
to a new amputee, it could be connected initially to a large labo-
ratory cotnputer facility which would act as an aiding system. The
laboratory computer could follow the operator training progress
and construct a probability space matrix which would relate his
responses to the environment. A state would be reached where
both the operator and the aiding systemn would achieve a training
criterion. As the PMG system defines the environment its proba-
bility parameters will converge to a certain level. As mnverfenoe
is completed the values of the conditional probability are defined.
At that point it becomes a straight forward circuit problem to
design and construct a micro-programmed aiding system. If for

example an amputee is exposed to a variety ENVironments,
which include ordi living requirements and specific vocational
requirements, a set of micro-pro for the probability matrix

can be constructed for all the relevant environments with the aid
of the laboratory computer. . . _ . :

. From the patient’s point of view, the system offers
assistance in prosthesis operation but is not ‘tightly controlled to
prpduce siereotyped responses. _
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APPENDIX A
The conditional average loss is given by:

"
Ly (@) = E X (a]2) P(a;| X) (0
=1
The loss function selected assigns a zero loss when the correct

decision is made and a loss of one unit for an erronecus decision
(i=j): it can be written as:

AEj1=1-5%ij {2}
where § is the Kronecker delta function.[8].
By Bayes rule:
P(X'a)P(a)
P X) m ————2< 3
(| X} PIX) @)
Substituting equation (3) into equation (1) yields:
R
' 1
- - P 4
bx () = 5o N e ]2)PX |2) Pla) )

=1
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If the input pattern is random P(X) can be assumed a
constant. Substituting eﬁaﬁun (2) into equation (1) and deleting
P (X), equation (4) can be written as:

7
Lx (a)) = 2 P (X|8) Pla—P (X [a,) P (a) (5

=l

which can be writiten as:
L: (a=F (X)—P (X'a:} P (&) (6)

Since P (X) is constant the loss will be minimized if P (Xja)
P (&)} is maximized

By the assumption that all inputs are independent:

P (X|a)=P (X;[a) P (X,a;) P (X;{a) (7)
Suppose there are three inputs of which two are one and one

is zero or
1
JE=|:I} {8)
0

P (Xla)=F (X,|a) P(Xs) (1~ P(X,|a)) (9}

Taking the logarithm of (9) for a general » component vector
in matrix form the %ﬂ]lmuing expression is obtained:

Select

Maximmum

row sum, fllog B} [X+log (1—P)}-[1 —X]+[log P (a,)} {10)
M., of



