LEGGED LOCOMOTION STUDIES

ON THE STABILITY OF BIPED LOCOMOTION
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Surnary

The =stability of legged machines in locomoticn Is considered.
The general machine bas a rigid body te which legs are attached. Loco-
motion is performed on level smooth surfaces.

The construction of machines is discussed. Types of actuators
and their relation to owerall machine stability are presented. Control
schemes for locomotion of ral systems are discussed

The coatrol and stability properties of a simplified dynamic
system are g:rcsn:ntad. Concepts such as repeatability and cyclicity are
introduced for this model,

The general stability of all such machines is separated into three
ATeps: ]i‘) stability of the bodies orientation with 1espect to earth,
2} stability of the bodies h?dectury or path, and 3) the stability of the
Bait of manner of moving e;ﬁfs'

control laws for a ful] dynamic system with 6 degrees of
freedom are preseated. Their stability properties are studled by simu-
lation with the introduction of disturbances.

The results of disturbances on such a dynamic system are pre-
sented with respect do the type of stability introduced.

Haslc Concepis

The machine considered for stability consists of a rigid body
to which a pair of “legs” is attached. The legs supply the drivinﬁ
and supporting farces to a “rigid” body. Note that the word *body
refers to that portion of the machine which is to be transmilted
from one place to another. The work “rigid” implies that the body's
orientation with respect to the various driving elements is geomet-
rically fixed.

The motion is to take place, in eral, over a smooth hoti-
zontal plane. No resistance to motion from effects such as viscous
drag from the media will be considered.

The basic machine and environment ate specified. Consider
now a more detailed construction of the machine. It is clear that
if the body is to be supported by legs of the type and shape clas-
sically observed in nahare, the joints of the leg must have some
form of regulation. There are two ways to consider the regulation:
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1) the existence of a force or torque actuator in which a
desired force or torque is generated, and

2} the existence of a “position” actuator where the position
of each joint is commanded by some predetermined algorithm.

The word “position” means the state of a characteristic
coordinate of the system. These two regulation schemes can yield
vastly different results when considering stability. Careful definition
of the machine must be made to ensure meaningful results,

To study stability, the machine with its regulation roust be
modelled mathematically. The stability of this model is then to be
analyzed. The model complexity is dependent upon the construction,
regulation and mode of operation of the machine. For example, 1f
the machine is constructed with a body which can be described by
a series of point masses, the oumber of equations necessary to
describe its motion can be greatly reduced by neglecting rotational
motion and the resulting moment of inertia. This el is good
for low velocities where these approximations hold.

It is obvious as velocity is increased beyond a certain point
in any system it no longer becomes possible to make such approxi-
mations and thus a more general represeniation must be used.

This type of machine must have control systems in order to
Function. Two types of controls were mentioned: a force controller
and a position controller. The difference is that the force contraller
supplies a force independent of the position of the controlled
element or, in this case, the apgle position of a joint, and the
position controller holds a position independent of the force applied
to the controlled element. If only position controllers are used to
command the angles of the legs, the angles must be generated by a
program, Such a system has been termed an algorithmic system [1].
The stability of such a machine can be considered differently and
will nat be discussed here. IE an actuator is of the force type then
it has some force impedance. That is, it can resist a disturbance
force independent of its position. The control command to these
actuators would be a force or torque cornmanded by some control
law or scheme. ' )

The most general machine, however, has a mixture of the two
types of actuators, That means, some actuators are required for
precision positionini:nd others are required to supp[ﬁeforces or
torques. Such are types of systems, along with t hysical
construction and environment listed above to be studied for
stability.

Machine motions to be considered here are those which occur
while external force disturbances are present. These disturbances
may include parameter variations in a Enite tirne persod. Examples
of the action of the longitudinal forces on the machine will be
considered during shertening or lengthening of the leg, correspond-
ing to stepping on a rock or into a hole respectively.
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Since the nature of the problem is cyclic, that is, cerwmip
characteristic coordinates tend to repeat in general, these distur-
bances can be considered variations in the system’s state at the
beginning of a cycle. This is possible since a perturbation of para-
meters during a particular cycle results in a difference in the state
at the end of this cfyf:le. This, then can be ¢onsidered a variation in
initial conditions of the differential equations describing the metion
of the machine. . X -

To correct these variations some control system musi exist.
One example of such a device is to design a system only to correct
differences in the initial conditions at the beginning of each new
cycle. Such, a control scheme will be illustrated Other control
schemes using continuous information feedback will also be discus-
sed. These control schemes, of course, are used in combination
with force and position achiators.

The classical theorems of the stability of dynamic systems [23
are well known. By all means the appraisal of stability and the
locomotion systems is subject io these general definitions. It is
proposed here, however, that systems possess certain properties in
this sense and this hecessitates the introduction of three categories
of stability for the general analysis of stability of the locomotion
systems:

a) body stability
b) body path stability
c) gait stability.

All these categories will be discussed later. The first two types
of Stabi]i[tjl'] have been classically studied in aircraft and missile
systems [3].

¥ There are many possible ways to represent a machine mathem-
atically. Two models representing different gaits will be ana]{rze:d
The abave concepts will be applied to these models and the qualities
of “stability” in the manner defined will be studied. Simulation will
be used to obtain results. ' ;

Stability of a Simplified System

Suppose a system consisting of point masses sup d by a
set of 1:53 which are position commanded by an nﬁrtfthm is
considered for stability. Suppose the leg algorithms are such that
the motion of the body is completely described. Suppose a gait is
chosen such that the two feet remain continuously on the ground
and the legs are advanced by sliding one foot forward at a time*

the * Thia has been assumnfi due to the {Inazimally simple {Eg]ﬁuﬂgﬁﬁm
geometrical parameters of seructure. However, such a s i does
o affect the generality of the considered concept.
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(Figure (AL1). In order to have this system dynamically satisfied,
a compensating mass must be used.
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Fig. ALY, Movement of compensating mass for one step

Based on these asumptions, the mechanical problem is reduc-
ed to a dynamic systam whose number of degrees of freedom
coincides with the number of coordinates characterizing the motion
of the compensating mass in space. These are angles in two mutual-
ly normal planes in body coordinates {Figure AL2).

The mathematical model of motion in the form of two
nonlinear differential equations with time-variable ccefficients is
presented in A dix I. The only connection between the kinematic
relations {of assumed algorithm) and the dynamics of the
compensating system, is the angle , The assumed law of variation
in this parameter (system of excitation) is given by

a= %J{Imcus wi) (1)

where w=const.
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Notice from Figure AI3 that a "stationary” gait is determined
by this algorithm [4].

Flg. AIL Simplified mechanical model of a blpad

If the differential equations are satisfied and a stntium?’
gait exists then there rmust exist mathematical conditions of repeat-
ability for equations AL, 2. These are:

Yo=vr
dg=—3r {2
Yo=V¥r
Som—br
The solution of the basic system {AlLl,2) with the imposed

features of repeatability has been suggested on the basis of vari-
ations in the boundary conditions {2}

S+ aby= — {81+ Ady)

i’.+ﬁi.=‘i"’1+.ﬁ‘i’r

&I +ady=— (#r+ad:)

¥, +A¥,=¥1+AYy (3)

Since each of the imcrements Ad:, A¥r, Ady, and &‘i’r depends
on the disturbances in the initial conditions: A#, A¥, A8, and
A¥, one cbtains the following relations
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By substituting Afly, Afly, AV, and A¥; from (4) into the
condition (3), the following matrix equation is obtained
[Al{Aqe}=1qr ¢} (5)

where the sensitivity matrix for finite variations in the initial
conditions is given by

_ﬂ'a.]. By 41 Ay A Aj Ay by il
Ad, Ay A3, Afrg
Bdr Aoy didr MY
7L A Tr!“ A ﬁ|fﬂ A 13,, A '~ifu
Aedr  Bedr  Aidr A dr
Ay AT TN R
B Ao¥r  AeVr  Ap¥r
| A, A, Ad, Ao
4 'ﬂ’a‘ : — (7L d,)
&E’u 1 oy m.’T_ Py
Ady= b ad, ! 7= *‘ e AT

A, — =)

where T designates the period of one half of the step (Figure AL2).
Thus, the problem of obtaining the solution of system (AL1, 2)

with repeatability properties is reduced to solving this basic motion
system and the sensitivity equations above (5) simultaneously.
The solutions for the motion of systems with an imposed
regime of repeatability leads to closed and symmetric trajectories
of the compensating mass in the plane of the characteristic coordi-
nates ¥ and 8§ (Fig. AL3). The trajectory closing, that is, the realiz-



OM ETARILITY OF BIFED LOCOMOTION 413

1=

TaQEppe W

e om IHL- =

b
Fig. Al3a b, Fhase portraits in §—23 plane.

ation of repeatability represents the mathematical conditions uf a
gait in ideal conditions. Since the solutions of this system depend
exclusively on the "free” parameters T and ¢n for the fixed values
of the other geometrical dynamic parameters, a series of trajectories
{Fig. AL3)} is available. Consequently, the algorithm (5) will be
mnwt in that domain of variation of the Eeamm:ters T and =,
in which the repeatability conditions (2) can be realized.
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To realize the gait in real conditions* on level ground these
repeatability conditions are only necessary conditions. Namely,
since the motion of such a system has an unstable character, for
each pair of allowable parameters T, o, there exists only one vector
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Fig. Al3c, d. Phase portraits in J— plane.

of initial conditions satisfying (2). It is clear that motion repeatabi-
lity in this case is not a result of the solution of the mathematical
model but of the exactly imposed boundary conditions. Thus an

* The real conditions in this case assume only the variations in the
initial conditions and system parameters,
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arbitrary perturbation in the system parameters* leads to an
instability due to the disturbance of the repeatability conditions,
i.e. the cyclic repetition of the movement.

Hoad
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Fig. AlL4. Dependence of [riction coefficient on «

A logical conclusion follows: the problem of maintaining the
dynamic equilibrium** of such systems can be solved (only) by
the introduction of regulating or control loops for the purpose of
controlling and keeping the conditions of equilibrium in motion.
However, in this case the same matrix equation (5) simultaneously

* The "system parameters” means the parameters and initial conditions
characterizing the system.
__** The dynamic equilibrium here assumes the maintaining of the
equilibrium in motion affected by perturbations, Thereby it is not limited
only to the case of constant velocity in motion.
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solved with the basic equations of motion can be used in its inverse
form for calculating deviations from the stationary state. That is:
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Fig. ALS. Dependence of ¥ and  on &

Based on this, the [ollowing statement can be formulated:

The repeatability conditions of the characteristic coordinates
represent the wnecessary conditions for a stationary gait of such
biped mechanical machines. The maintenance of these condirions
represents the sufficient conditions for stationary gait™. _

* The stationary gait assumes a gait with constant mean velocity during
the motion of the locomotion machine.
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The results of a simulation of the dynamic behaviour of this
biped locomotion system can be represented in the etric plane
of the imdependent parameters T, #o (Fig. AL6). This diagram

dm

Fig. ALS. Operating disgram of gait of the considered model

represents, in fact, the necessary conditions of this “mathematical”
gaif, or the realization of locomotion under ideal circumstances.
Dijagrams of this cl‘hypc: serve as an index of capability for fulfilli
the necessary conditions of ideal locomotion. They hold for particul-
ar pairs of characreristic values T, e, with a given type of siructure,
with definite geometrical — dynamic parameters, and with pre
scribed kinematic limitations. In other words, every characteristic
point M(T, aa) of such a diagram within the itied limitations,
represents a definite possible state of dynamic equilibrium of the
locomotion system in ideal working conditions.

The above considerations can be extended also to more com-
piex dynamics of locomotion systems. For a locomotion system
represented by a full number of degrees of freedom the problem
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of necessary and sufficient conditions is reduced to the selection ol
a certain algorithm and its maintenance by a complete regulating
system. This will be treated later.

Stability of a Complete Dynamic System®

This section is concerned with the stability of a system describ-
ed completely by dynamic equations. The motion of the “body”
of such a system is considered for stability. The "body” is consider-
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Fig. AlLL, Configuration of dynamic maodel

ed the rigid portion of the machine to which a set of legs is attached.
In general, this body can be described in six degrees of freedom

* Under the term of complete dynamic system here is assumed the full
oumber of degrees of freedom of the locomotion machine's body.
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by a set of six nonlinear differential equations of second order. One
method to describe this motion is presented in Figure AIT.1, 2, 3,4, 5.

To make such a body move in the six degrees of freedom;
forces are applied. These forces must be applied it such a way that
“stable” motion results. The three basic types of stability will be
discussed here. .
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Fig. AILY Computation of body angles arw] positions from applied ::ieg
forces and torques

First consider the body angular orientation and altitude. Sup-
pose some systems For the control of these coordinates have been
designed, The problem is to study the stability of the body's orient-
ation with respect to earth. Due to the nature of the problem, ie.
the fact that one leg is in ng:pnrt at some tirmes, the l::mm:]{l generally

experiences some angular displacemnent regardless of the control
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Fig, AIED, Coordinate transformation to resolve body velocities to earth
velocities

scheme. This is also the case with altitude. Thus for analysis pur-
pose, the motion of the center of gravity can be conside to
exist in a “region” in the four coordinates of concern, In *Normal”
undisturbed locomotion the region can be closed. Keeping in mind
these concepts the definition of this form of stability can be made:

Definition 1 — BRody stability. A biped machine’s body is
considered stable if there exists a closed region *R" which encioses
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the undisturbed trajectory of the 3 earth angles and the altitnde
such that if the machine is disturbed by a disturbance d €D, the
trai'actu returns 1o the repion “R"” as time becomes infinite. D is
a class of disturbances,
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Fig. ATLA. The matrix of inertial comporents and leg to body transformations

A number of points must be kept in mind in this definition.
First, this deals only with the body ar position. with respect
to earth and the body's altitude. This has no implication on the
mode of locomotion or the path of this locomotion. But this
stability is necessary before any other form of stability can be con-
sidereE. Second, this corresponds to the concept of repeatability
conditions mentioned above except in a somewhat looser or less
precise sense. This is necessary since the system is more complex,

The next coordinates to consider for stability are the linear
coordinates in space. Since altitude is already considered, the
position of the body in two directions (] tudinal and lateral)
and its forward velocity must be considered. Again for stability
to exist control of these axes must be implemented. In general, this
implies forward velocity and directional control, or velocity vector
control. Stability about these axes, however, requires the existence
of a nominal trajectory of the center of gravity and after a distur
bance, the system must return to this rominal trajectory. The clas-
sical definitions of trajectory stability can be used with a slight
modification. Since the body is continuously in oscillation, the body
will not return: exactly to the nominal trajectory but to a region of
the nominal trajectory. The following definition provides a basis for
such an analysis.

Definition 2 — Body path stability. The path of the body in
space of a biped machine is considered stable if the “ave
velocity vector” returns toward its original direction and magnitn



ON STABILITY OF BIFPED LOCOMOTION 421

after a disturbance d €D. The average velocity vector is:
T

- —-&
;f Vl=Voe

o
where T is the period of a complete cycle. It is both an average
in the magnitude and direction. D is a class of disturbances.

Ta

e l!'T-IG _ applied force and torque vector
Ty
IF1
where
To; T3 and Ty are torques applied in thed 3, and ydirections,respec—
tively
Fy is the longitudinal leg force.

=0 T £ o< O

whoere

u, v and w are linear accelerations in body coordinates

p. 0 and r are rotational accelerations about the doby axis

VI =wg -g 5in B8 ]

WwWp-ur + g cosB8cos ¢
ug —-rp + g cos Beos 0
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where

u, v and w are linear velocities in body coordinates
p, q and r are rotary velocities about the body axis

I.. I,; and I.. are body moments of inertia about the body axis

¢ is the gravitation constant
0 and o are body pitch and roll angles with respect to the earth
Fig. AIL5, The vector guantitics of the body acceleration equations
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Finally, there is the problem of describing the stability of
movements. It only makes sense to'mnsidermﬂ'w stability of s
movements if an average constant forward wvelocity is assumed.
The velocity is averaged over one cycle. In this case this reduces
to the study of the stability of a “stationary gait”, A “stationary
gait™ can be characterized by the following factors at least:

1} average constant forward velocity
2) constant stride

3) constant phasing

4) constant duty factor®

5) constant cycle time,

More parameters are necessary to describe the gait if the arms
or other aids are used in locomotion. Note that these parameters
are all contimuous in their own domain but must be computed
discretely after each complete cycle, '

Suppose a given stationary gait has “k" continmous characte-
ristic parameters. These parameters represent a point g, in k-5 .
If the gait is "stationary” this point does not move from Wm
cycle. When the system is disturbed this point moves to a new
point g, in k-space, Then, after “n” steps, if the point g. approaches
g, in k-space, stability results. Realistic systems, however, cannot
repeat a gait exactly, Therefore g, is a volume in k-space. Thus
formally:

Definition 3 — Stationary gait stability. A statio gait is
considered stable if the characteristic factors of the isturbed
system represented by a k-vector g lie within a volume g, and if after
a disturbance, the vector g, returns and remains within g, where
n is the number of steps a disturbance.

This definition seems to coincide with the staterment about
the necessary and sufficient conditions of repeatability above. It
differs, however, in the fact that here the leg system characteristic
coordinates are concerned whereas the above was concerned with
body characteristic coordinates. Here, the system must have control
of all the Ercc;perties of the legs movements, The simplified system
above replaced all these control variables by an a}it:ritbmic pro-
gram selected a-priori, thus eliminating problems of this type,

I't should be noted that this discussion about the k-dimensional
vector is correct in the case when force conirol exists on elements
of the leg system to control these characteristics, If force comtrols
do not exist for all these parameters then they must be determined
by sorne algorithm. For example, suppose the stride length is always
set at a particular number s, the phasing is always to be precisely
P, and the cycle time is always set at T, Then only velocity and duty
factor are variable. Thus the space of g is two-dimensional.

‘Dut}ﬁnchrhthemmmofmaamnuntufﬁmm.legspmds
o the ground versus the amount of time it spends in the air.
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The implication of this definition should be made clear. It
should be noted that for a given average forward velocity, an
infinite number of gaits can exist. For example, the stride may be
reduced with a corresponding reduction in cycle time, etc.

In any physical system there exists a limit to the excursions
of elements of the legs and a limit to the magnitude of forces and
torques applied. When determining the stability of a system to
perturbations these limits must always be kept in mind. The mathe-
matical representation should include these limits.

This concept of limits leads naturally to the coacept of
disturbance capability. That is how large a disturbance d of a
particular class I} can be sustained by a systemn before one of these
physical limits is exceeded. There are three kinds of stability and
each has its own limits for a particular machine.

The introduction of disturbances to the mathematical modei
of a dynamic biped machine shows the concepts discussed. The
biped machine is represented by the Figure AIll. The equations

Flg. ATILé. Photograph of mathematical model during locomotion

describing the motion are presented in Figures AIL2 and AIL3. The
control schemes for the various body es and axes are listed in
Appendix 1I.

The motion of this system is shown in Figure ATL6. This is a
photograph of the projection of the simuiation of this machine as it
performs locomotion. A line is drawn from the center of E:vity to
a line joining the two hip joints and a line is drawn from hip of
the leg in support 1o its corresponding heel. The leg is not shown in
the swing phase.

The response of this system to disturbances will be illustrated.
Two classes of disturbances will be investigated. First a longitudinal
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force will be introduced to simulate running into an obstacle. A
force impulse resulting in a change of forward velocity of 20%
is investigated. The resulting characteristic velocities of the suc-
ceeding steps are shown in Figure AILT. The bold line shows the
undisturbed motion, the light line shows the motion after a distur-
bance. The numbers show the converging nature of the control
algorithm after each step. The gait also varies in this case. The
variation in one of the gait factors (stride) is shown after a
disturbance in Figure AILS.

A second class of disturbances is steps or holes. A step is
simulated for one cycle. The induced disturbance in the pitch and
roll angles is shown in Figure AIL9, The bold line shows the

FITCH ANGLE

e

BOLL AHGLE

Fig. AIL9. Pitch and roll reactions to a step disturbance

undisturbed motion. The light line shows the motion after a
disturbance. The disturbance is 20% of the length of the leg. Again
the numbers show how the regulating mechanism drives the system
practically back to its normal operation after 3 steps.
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APPENDIX I

The dypamic system is maximally simplified by the kinematic
connection between the levers of the locomotion system (Fig. AL1).
in the analysis, a gait has beén adopted where the extremity tip
is in continuous contact with the ground during the motion. The
gait phases in which the locomotion model has been consideéred are
presented in Figure ALZ,

The differential equation of motion for the first and second

art of the step (Fig. A1.2) can be written in the following concise
TTI: .
M,=% 2B, sin & —¥[2B, cos # +cos? 81+
al4(A;+Ag) (A, +B,) +2B, cos 8+
_ 2(A,+2B )M +4{A, + A ) (A, + B, )M, +2M, + M1 +
# 2B, cos #+
¥? 1B, cos 4+
WO[4B, sin 8+2 sin b cos 8] —
A2(A,+B,) sina—cos Bsln 8] — .
AL2(A,+2B )M, +2(A,+B,) (2M,+M,) ] sin a=0 ALl

M.=$[ (B, sin #—1) cos ¥—2(A, +A,) cos & sin a] +
\'{ B, —sin #)cos # sin ¥4+ ©
% 2(A,+A,)(By—sin 8) sinet
#4[ B, cos 8 cosW +2(A, +A,) sin # éos ]+
;‘P’{B.—sin #) cos # cos ¥4
@t 2(A,+A,) (B,—sin #) sin # sin W —
A,{By—sin#) —
BoA(2M,+M, +M,) =0

V=" --ga Al2

In these equations M, ard M, are moments around the x and ¥
aves, respectively, and the derived values B,, B,, B, and B, have
the following form:

{a) for the first part of the step,
B,=A,,
B, =A,, ;
By={A, +A,) sin (¥ 4-a),
By={A +A) cos (¥ +4a),
B,=8,
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(b) for the second part of the step,
B,=—A,,
B,=—A,,
B,=A, sin (¥4e)+ A, sin {¥—a),
By=A cos (¥4a)+Acos (V—e),
B,=A, cos (¥+a)—A, cos (¥ —a)

A= M,= Da

C m;
= M,= T

C m,
Al G M=

e m,
A~ E M=o

c m, c2

M= —J
m, o

a, b, ¢, d are geometrical characteristics of the biped structure
(Figure AL1). m,, ms, m., m, are masses of the appropriate parts
of the biped structure. I, I, are inertia moments of the appropriate
masses of the biped.

Accordingly, the dynamic equations of motion represent a set
of nonlinear, nonhomogeneous differential equations with time-
-varying coefficients. Due to a fixed kinematic program of the
shifting of the lower extremities, the only connection between the
system (its output coordinates ¥ and 4) and the extremities is the
angle a. This represents the law of change in the driving system

Uy

2

= (1— cos wi)

Parallel with the basic differential equations of motion are the
expressions for the system reactions at the contact point of the
extremity with the ground.

The reactions recorded in a concise form are represented by
the symbols which take the form
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~ZX —@'sin#sin ¥
m.c
¥ cos fcos ¥+
a{M, Z2(2A;,+A,) + My 4(A; +-A3) +M,; 2(A, +4,) +
2(A;+A;) cosal+
ﬁ' cos & sin ¥ +
9 cos & sin ¥ —
a*{2(A, +2A,)M, +2(A, + A, }{2M; + My + 1) } sin a4
¥ 2sinfcos W Al 3

& _Scos b+ sind ALA
m-C

Z = _{sin#cos P~

m.c .
Y cos & sin ¥ —
-?f:{Ml 24, -+ M, 2024, +Ay) + (M +1)2(A; +A;) } sin a—
i}-‘ cos dcos V—
Yicosdoos ¥+
% 2 sin # sin ¥ —
at{M, 2A, + M, 2(24,+4,) + 2(M;+1){A +A) } cos o+
A(2M, +2M, +M,+1) ALS

The simultaneous solving of the motion system AI1, 2 with
tche seasitivity system (6) for a series of angles a and step periods
T has resulted in a series of portraits in the i:lane representing
space shifting of the compensation lever of the locomotion system
(Fig. A13).

Figure Al4 illustrates dependences of friction coefficient
{angle tangents between the components of the system reactions)
according to the expressions (AL3, Al4, ALS5), in the function of
angle a for a series of values of the step period T.

Figure ALS5 shows the results concerning the dependence
between the angles ¥ and # and the angle a. for different values
of the step period.

The dependence of the step period on the angle a for limited
values of the angles of compensation lever and an adopted Friction
coefficient* has been given as the final diagram based on the

* Coefficient p=09 corresponds to the contact between the ground
made of concrete and the exiremity rubber tip.
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preceding diagram dependences. The curves of constant speeds are
given in the working diagram for definite pairs of T and ga. Thus

the wnrkiug diagram limited by the curves fpu; Yo and p=const,
has been obtained (Fig. AL&).

APPENDIX 11

The motion of a rigid body in space with respect to a hody
and earth coordinate systerns is given by Figures AILl and AIL2,
Figure AIL]1 shows the method of computing the velocity and posi-
tion of the body axes system from bmi;ruaxes accelerations. Figure
Al1.2 provides the transformations necessary to obtain velocities
relative to earth from body axes velocities. To compate the acceler-
ation vector the vector equation

a=At+h

is used. The quantities a, A, t and b are defined in Figures AIL4
and AILS. The Figure AIL4 provides the transformation from leg
coordinates to body coordinates. Figure AILS provides the defi-
nition of the quantities t and b, The vector t is the force and torgues
upplied in leg coordinates. The vector b represents the velocity
coupling and gravity terms.

The generation of the forces and torques is given by Figure
AlL:, Here the control laws for the various leg coordinates
are given.

1. Longitudinal control torque

Fa=tq (c—a;) + Cq (":I'-_‘ir}

At — time within a cycle

#. — desired angular rate — a function of velocity

. — computed from desired body angle and foot position.
2, Laieral control torque

FP=iy (B—Ro) +C} ':!3]
3. Yaw control torque
Fy = ¢, (Xg—¥Xme) + €5 (Xe—Xpnr)

xue — position of hip number one with respect to earth



m . YUEDBRATOVIC AND A, A, FRANK

4. Leg foroe along its length e
F,=c, (zg—~zen} + € () .
5. Leg placement in forward direction
xpe=Xg +dx
dx — preselected constant corresponding to oy
6. Leg placement in lateral direction

yr=ye+dy
d, — preselected constant corresponding to B=§,
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