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Summary

While legged locomotion i= obviously very efficient and versatile
and iz widely encountered in nature, g limited success has been
attamed in constructing legged vehicles, ‘Fh.e failure of such wvehicles
1o appear is 1o a large extent due to the lack of a well developed
mathematical theory of leggod locomotion. Another manifestation of
this lack is the absence of electromically controlled lower-extremity
prostheses and orthotic devices, The purpase of this ris to sum.
marize the available body of theoretical knowledge relating to stability
and ceatrol in legged machines and animals and to suggest areas where
additional rezearch ought to be undertaken. The paper includes a dis
cuszion of a hierarchy of mathematical models beginning with finite
géfate models and concluding with rigid body dynamics. Some new
rllzﬁulgs ?nd:c?lamm' g mechanisms for mherently unstable systems are
also incinded.

Introduction

Lacomotion in terrestrial animals is most often accomplished
by means of a periodic alternation of forward and backward
motions of articulated limbs which both support and prope! the
animal. While such systems are obvicusly very efficient and
versatile, only limited success has been attained in constructing
machines based upon the same principles. Rather, one finds that
nearly all vehicles for ground transportation make nse of whesls
as a substitute for legs. Contrary to common opinion, this circums-
tance is not primarily due to any inberent advantages of wheeled
and tracked systems {1,2], but results mainly from the fact that
the contro! problems involved in limb coordination have not yet
been solved by artificial means in an entirely satisfactory manner.
This, in turn is 10 a large extent due to the lack of a substantial
mathematical theory of legged locomation.
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Another manifestation of the lack of a theoretical basis for
legged locomotion system design and analysis is the absence of
electronically coordinated lower extremity prostheses and orthotic
devices. While therz seems to be no inherent reason why electronic
control should not be applied io lower-extremity sysiems [3] as it
has been to upper extremity devices [4, 5], the primitive state of
knowledge of the dynamics and control principles involved in norm-
al legged locomotion has retarded such developments,

The purpose of this paper is to summarize the existing body of
mathematical theory relating to stability and control of legged
systerns to the extent that it is known to the authors and to s t
some airl*eas in which the theory might be improved by further
research, :

Fintte State Theory

The earliest systematic study of human and animal locomotion
principles is apparently due to Muybridge [6,7] who invented a
type of motion picture camera which was successfully used in 1877
to obtain the first photographic record of the successive phases of
a number of quadruped gaits. In his earliest work, Muybridge was
interested primarily in sequence in which feet are lifted and
placed during the steady forward meotion of a quadruped. His
investigations ultirately revealed a total of eight distinct patterns
or “gaits” employed by various animals, some of which were
previously unknown to either horsemen or zoologists.

Since only seguences of foot lifting and placing were consider-
ed by Mujrbric[vge. his results can be cast in mathematical form by
assigning just two states, say 1 and 0, to each leg with one state
corresponding to a leg being in a suffeurtin pbase and the other
slate corresponding to a leg being in air {transfer phase). Such
a “finite-state” model for locomotion was first proposed by
Tomovié [8, 9, 10] who also suggested along with McGhee that
finite state methods could be extended to a consideration of the
problem of joint coordination in a powered lowerextremity
prosthesis [3].

In order to test some of the conjectures in [3], a project was
initiated in 1965 at the University of Southern California to design
and construct an artificial quadruped based entirely upon finite
state principles [113. One of the first guestions considered in this

was the problem of choosing a gait for the machine,
Literatute research revealed that the work of Muybridge had been
greatly extended by Hildebrand [12,13] who both introduced a
more elaborate mathematical madel for gait analysis and obtained
far better data using modern high speed motion picturs equipment.
Hildebrand focused much of his work on a crass of quadruped
gaits, called regular symmetric gaits [14], characterized by two
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special properties: 1) the fraction of a cycle during which a leg is
in a support phase is the same for all legs and 2) the two legs in
either the front or rear pair are employed & etrically; ie., the
time between the contact of one such leg with the ground unti! the
contact of the other is equal to omne- of the period of the gail,
Hildebrand proved thai there are exactly forty-four such gaits
theoretically possible. Moreover, he also showed that precisely
sixteen of t{ese have the further property that feet are never lifted
or placed in synchronism but rather each cycle of locomotion
consists of exactly eight distinct events (four foot liftings and four
foot placings}. Gaits with this property have been called connected
gaits [14]. Figure 1 is a finite state representation of a particular
connected quadruped gait called a crawl While Muyhritilige was
aware of only four connected regular symmetric gaits, Hildebrand
has observed eleven of the sixteen theoretically possible gaits of this
type in use by one or another species of quadruped [12]. .

The work of Muybridge and Hildebrand on grit enumeration
has been extended and refined by McGhee [14] who discovered that
the tctal number of theoretically possible connected quadru
gaits is equal to 5040. A more recent calculation by the arthors has
shown that if the singular gaits involving simultaneous lifting or
placing of more than one foot are taken inio account, the tetal
number of distinct quadruped gaits is equal to 65428, a number
much\bﬁer than suspected by previous investigators.

ile an opportunity remains for much more weork on
enurneration and classification of gaits for n-i machines and
animals, any investigation restricted to lifting and placing sequences
cati hardly be expected to reveal a great dea.r aboui dynamic
stability. Clearly, any study of stability must include some spatial
properties of gaits as well as their temporal properties. This fact
was recognized early in the artificial gquadruped proErm and
eventually lead to a kinematic theory of quadruped stability [5].

Kinematic Galt Models and Static Stability

Tomevic [8] observed that “creeping gaits” used by low order
animals employing a large number of legs could be achi by a
finite state control system since the dynamic stability problem is
solved in such animals by keeping most of the legs on the ground
at any given time and in a position such that the animal is always
staticalﬁ stable, This kind of solution to the stability problem is
also obviously possible for both qua and biped motion
providing that each leg is Furnished with a sufficiently large foot
and that these feet are properly overlapped during a locomotion
eycle. This approach is typically used in walking toys. It is easily
chserved, however, that living quadrupeds do not employ this
principle. Rather, the feet of most quadriped animals are so small
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as to approximate a point in comparison to body dimensions. Since
quadrupeds are capable of arbitrarily slow lecomotion, it is evident
that their stability in low speed ‘fjts must result from the placing
and lifting of Feet in such a way that the vertical projection of their
center of gravity is always contained in the “support pattern” [15]
determined by the feet in contact with the ground. Figure 2 illus-
tmt&ls such a sequence of support patterns for a singular quadruped
crawl.

An analysis of static stability can be carried out mathematical-
ly by defining a set of parameters which characterize the time

ndent positions of each leg relative to the center of gravity of
an animal or a legged vehicle. McGhee and Frank [15] have accom-
plished such an analysis for quadrupeds by idealizing each foot to
a point and considering only constant velocity motion in a straight
Line. The resulting kinematic gait model comsists of a (4n—1)
dimensional vector of real numbers for an n-legged system. The
prim:]i:l]i‘:.l result ;!l:tained in :[i 53] is mt gf htahe gﬂ thmretict:ﬁy
possible connected quadruped gaits, only ve property that
the feet can be placed so that the system is statically stable at all
times. Furthermore, atnong these three, there exists a unique
optimum gait which maximizes the degree of static stability. This
gait is the crawl illustrated in Figures 1 and 2. The crawl gait
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Pig- 1. Binary lag state functions for a quadruped crawl

appears to be the one favored by all quadrupeds for very low speed
motion, apparently as a result of its supertor stability properties.
It was also selected as one of the gaits successfully attained by the
Lniversity of Southern California artificial quadruped for the same
reason [11, 14].

© Prelimimary investigations indicate that bipeds, including both
bird:z and buman beings, also stabilize low speed locomotion by
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keeping their center of gravity within the support zone formed by
their feet. This requires, of course, that biped feet be somewhat
larger relative to body dimensions than gquadruped feet and this
also seems to be typically true of bipeds. It is very clear, however,
that stability in all but the lowest speed gaits results from some
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Flg. 2 Support pattern sequence for a singular quadruped crawl (Arrows
indicate center of gravity motion during each phase.)

mechanism other than static stability for both bipeds and quadrp-
eds. To study these gaits it is therefore necessary to introduce
further complexities into the mathematical madel! for a locomotion
system.

Dynamic System Models and Passive Stability

The exact differential equations of motion for a vehicle with
articulated limbs are extremely complicated. A precise description
of animal dynamics is still more involved and, in fact, is probably
unobtainable as a result of the distributed and compliant nature of
muscle systems, internal organs, etc. Nevertheless, in keepin% with
the spirit of mathematical mudcliigﬁ in eral, it is possible to
make certain approximations whi ymﬁ“ equations of motioo
which are at least amenable to computer simulation. Perhaps the
simplest set of equations which still embody much of the essentials
of many types of locomotion systems results from treating a
machine or apimal as a single rigid body to which are attached a
specified number of massless legs. The resulting equations of
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niotion can be written in a body centered coordinate system as
follows [17]: : _ .

. [‘
U=¥r—wgq+ S —gsin g _ (Y

m
{r=wp—ur+%+g cos § sin d (2)
ﬁnuq—vp+£+g cos §cosd (3)
p=[(py—L) ar+ L] 8
q=[(lce= 1} rp +M]11y, (5)
1=le— 1) P + NIl ®

In these equations, 8 and & are body elevation and roil Euler
angleq, respectively, u, v, w are translational velocities in body
coordinates and p, q, T are body angular rates in roll, pitch, and
yaw respectively, The quantities f,, fy, and f; are forces applied to
the body by the legs while L, M, N are the applied moments. These
forces and moments are to be determined by an appropriate feed-
back control law so as to Fmduoe stable locomotion with a specif-
ied gait. The other symbols appearing in {1) through (8), namely
g, m, Iy, Ly, and I, are all constants curres‘imndj?ﬁrrcs tively to
gravitational acceleration, vehicle mass, and the three body mom-
ents of inertia about the principal axes x, ¥, 2.

A digital computer program has been written to carry out the
following sequence of instructions for an arbitrary legged locom-
otion system governed by (1) through {6}:

1. Starting with an initial body state vector [17]

a=(xe, Yo, Zn, U, Vo w, 8, ©, . P, @, 1)T ™

in which Xe. ye, Ze is the body center of gravity location in an inertial
veference Frame, & is the body azimuth angle, and all other quantiti-
es are as previously defined, compute leg lengths and angles for all
legs in contact with the ground.

2. Using a feedback control law, determine leg actuator forces
and moments as well as reaction forces and moments for each leg.
Transform these Forces to body coordinates and sum to obtain the
forces and moments appearing in (1) through (6). Also determine
any change in fool position required to maintain the specified gait.

3. Evaluate dx /dt and integrate over one time increment, h.

4. Retum to 1. _

It should be noted that (1) through (6} provide omly six

components of d_.;ifdt in step 3. The other six components are
obtained by transforming the velocity components u, ¥, and w from
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body coordinates to inertial coordinates to obtain xz, ye, and zg
and by transforming the body angular rates p, q, and r into Euler
angle rates 8, ®, . All of these steps are part of the existing simul-
ation program [17].

The simmulation program described above has been used to
investigate the utility of a simple type of “model reference” control
system [17]. This method of feedback control assumes that the
feet of a machine or anitnal can be placed in the focations determin-
ed by an ideal constant velocity kinematic gait model and then
cun;rmtcs control torques and forces from the differences between
ideal and actual leg angles and lengths. The particular control law
which has been simulated amounts to driving the leg angles and
lengths ta their correct kinematic values and then a?lnwing devi-
ations from these values as a result of both compliance and damp-

ing in each of two hip angles per leg and in leg length [17), As
would be expected, gaits which are statically stable at all times
are easily realized by such a control] scheme. A less obvious result,
also obtained from simulation, is that even with such a simple
.control law, dynamic stability can be obtained in gaits which are
staiicalli'l unstable in some phases. Specifically, referring to Figure
2, if each front foot is lifted before tﬁn Tear ffmt on the same side
is placed, then a quadruped employing this gait (which is the
normal quadiuped walk [111) will be statically unstable and will
start to fall toward the unsupported side. However, providing the
duration of this phase is not too long, when the rear ?Dﬂt is placed
in a supporting position, the machine may be ablé to recover its
balance. Suhulation shows that it is' not difficult to find spring
constants and damping rates which dissipate the kinetic ene
accumytated during each unstabie phase so as to render the overall
gait stable. Because a control law of the sort described is equivalent
to an automotive type suspension and drive sysiem composed of
springs, darnpers, and fluid couplers, a gait which can be so
stabilized is said to be passively stable. S .

It appears that not all gaits are passively stable. Thus far all

attempts to stabilize the quadruped trot [17] by the above tvpe of
elementary model reference control have failed. {The success report-
ed in [17] was later found to have resulted from a programming
error.) This is not too surprising since a trot, which invelves sup-
l:;ort only by one diagonal pair of legs at a time, contains no statical-
y stable phases [17]. It appears that active stability control is
necessary for such a gait.

Actve Stabilization Systemn

The problem of stabilizing a quadruped or a biped gait which
is not passively stable bears some resermglanne to the prablem of
stabilizing an inverted pendulum. Figure 3 shows such a pendulum
constrained to rotate in the xy plane. As can be seen, it the base
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of the pendulum is considered to be moveable, and if the mass m,
is allowed to rotate relative to the supporting arm, {, then this
system possesses three degrees os freedom: b, &), and ®,. I it is pos
sible to apply a torque at the lower end of the supporting arm,

Fig. 3. An inverted pendufum system

there is no difficulty in stabilizing such a systerm in an upright
position. Vukobratovié et al [18] %mre shown that it also is not
difficult to stabilize such a dulum by automatically moving its
base according to a feed control law which computes b
&, and ®,. However, if b is fixed and no torque can be applied to
the base of the pendulurn, then it is not immediately obvicus that
a stabilizing mechanism can be found. To investigate this question,
it will be convenient to assume that the supporting arm of the
ndulurn is both massless and perfectly rigid. The pendulum then
ggcumes a constrained system and the Lagrangian formulation of
classical mechanics [19] provides an organized way of cbtaining
the equations of motion.
Suppose that the mass m in Figure 3 is supported by a friction-
less bearing located at its center of gravity and further that a
torquing device is present to produce am arbitrary torque, M, between
the supporting arm and m. Let the sense of M be such that 2
positive value tends to increase ®@,. Finally, for convenience, lat the
origin of the x-¥ coordinate system be the base of the pendulum.

Then, evidently, the coordinates of the center of mass are
x=—1sin ¢, (8)
y={cos 9§, (9}
The potential energy is consequently given by
U=mg!cos ¥ {10}
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Since ! is constant, from (8) and (9)

x=—{®P, cos D, (11)
y=—1d, sind, (12
so the kinetic energy of the system is
Te o 13 4+ L mpseyyn) (13)
2 2
1 P 1 . g

where I js the moment of inertia of the pendulum mass. Combining

(10} and (14), the Lagrangion of the pendulum is given by
L=T-U (15)
=%I‘ﬁ§+%m!’¢'f—mglcm¢l (16)
According to the sign convention on M, the virtual work done

by a virtual displacement of @, and 9, is

GM =M (5P, —5®,) = —M 3D, - M5b, (17
Consequently, from the Lagrange equations of the second kind
for nouconservative forces [19], it follows that the equations of

motion for the inverted pendulum system are obtained from (16}
and {17) by evaluating the expressions

L .M (18)
dat ad, o0,
4ol oL (19
dt ab, o,
Cmi’.}% out the indicated differentiations produces the
coupled set of differential equations:
m¥E <, —mglsin $,=—M (20}
[, =M (21)

To complete the analysis of the inverted pendulum system, it
is necessary to choose a feedback control law. The general finecar
control law for this system can be written as

M=Kk, Py +k, Pk, &, +k, D, 22)

where the k are control system gain constants. Substitution of this
equation into (20} and (21) produces the confrofled system egu-
artions

m 8, 4+ k, Dy +k, P, —m g Isin b, =—k, $,—k, b, (23)

I'i':—kz ¢'!"k1 ¢2__'ki ¢1+’k;¢': (24]
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The guastion now to be answered is whether or not there exist
any values for the gain constanis which stabilize this system. One.
way of settling this quesiion is to make an assumption that ¢, is & -
small angle so that it approximates its own sine and then to a plg
the Laplace transform to the resulting linearized version of fza
alunﬁewith (24). When this has been done, the Routh criterion [203
can be used to determine if any parameter values exist such that all
roots of the system characteristic equation have negative real parts.
While the details of this calculation are too le ¥ to present here,
the result is favorable: stabilizing parameter values do exist. Figure
4 presents a nurnerical solution to (23) and (24) obtained with the
parameter values shown on the figure. The stability of the system
is evident.

The system treated above resembles a legged locomotion sys-
tem in the respect that only forces and not moments can be applied
to the “leg” w the supposting surface. The inverted pendulum
particularly suggests a quadruped trot since a quadruped employing
this gait. is free to rotate about the line joining its two supporting
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Fig. 4. Inverted pendulum transient response with linear feedback control

legs duriﬂ any phase of locomotion [17]. Tﬁe same observation
can be made with respect to a biped walk during those phases when
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both feet are in contact with the ground. It is reasonable to ho
therefore, that a control law resembling (22) could stabilize el

of these gaits. This question has been answered afflnnauvel}r for the
trot by means of computer simnlation. Specifically, to the passive
suspension” control law described earlier, a supp tary to
was added to the actuator controlling leg rotation normal to
nominal plane of motion. This torque was proportional to a Imear
mmbmatmn of body displacement and body velocity normal to that
Eane The rall behavior of the trot after this addition to the control
Fw is quahtauvel}r the same as the pe:ndulum response shown in

igure 4

Improved Dynamic Models

So far as is known to the anthors, all analytic and mmputer
studies of legged locomotion systems to date have either igno
masses, as in the equations presented in this paper, or have anlhcaf
Iy constrained motion to a plane [21]. To the extent that legs can be
represented as rigid segments joined by hinges or gimbal systems,
these restrictions are unnecessary. It is possible to construct precise
mathematical models for leg motion in three dimensions. The
Lagrangian formulation .of mechanics again appears to furnish the
best method for introducing forces of constraint into the equations
for such systerns. Current research in legged locomotion at Ohio
State University includes an effort to improve the existing ral
legged system simulation to incorporate leg mass for legs with a two
mﬂﬂ of freedom hip ﬁmt and a one degiee of freedom knee joint.

e a great deal can be learned about quadruped locomotion with
massless leg models, it is clear that a realistic study of human gait
dﬁ'narmcs rmust include a Ieg with nonnegligible mass and at least

above three degrecs of freedtJm

Conclusions

The design and analysis of both natural and artificlal legged
locomotion systems can be put on a firm scientific basis by careful
application of the laws of mechanics and an exploitation of modemn
control theory, finite state machine theory, and computer simul-
ation. While the present de‘j’ of results relatmg to such a quantita-
tive mathematical theory is rather small, there is no inhérent reason
why this situation should prevail in the future. Sericus efforts by
physicists and engineers in cooperation with physiologists, physic-
ians, and others in the fields of prosthetics, orthotics, and vehicle
design should result in a theoretical understandmg which will
eventually lead to improved devices and machines for aidmg and
accomplishing legged locomotion.
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