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THE MATHEMATICS OF COORDINATED

CONTROL OF PROSTHESES AND MANIPULATORS

D. E. Whitney

Summary

The problem of coordinated rate control and position control of
multidegree of freedom arms ave treated together in this paper. Previous
work by the author is summarized and revised, and a coherent theory is
presented which allows:

1) real time computer control

2) rate control commands expressed in a wide variety of extermal co-
ordinate systems ineluding hand-oriented coordinates, rectangular
or shperical coordinates, or motion along special axes such as
line of sight

3) any number of command azes to be activated simultaneously

4) solution of the position control problem by means consistent with
the rate control problem, allowing desired final position to be
specified in terms of meaningful extermal coordinates, and obviat-
ing the need for numerical coordinates, and obviating the need
for numerical  search or solution of complicated equations to
find the final joint angles,

§) consistent treatment of vedundant arms

6) attention to singularities

7) laigon to optimal control of dynamic models of arms

Introduction

This report briefly summarizes the results of several years’
work by the author and his colleagues on the development of co-
ordinated motion control of computer-driven arms. The basic ideas
are set out in reference /1/, a first attempt at hardware realiza-
tion is described in /2/, and the latest and most successful rea-
lization is contained in /3/, which also contains details of hard-
ware and the contributions of many co-workers.

The objective of coordinated control is to allow the opera-
tor of a mechanical arm to command rates of the arm’s hand along
coordinate axes which are convenient, task-related, and visible
to the operator. A useful set of coordinates, fixed to the hand
itself, is shown in Figure 1. To accomplish such motions, seve-
ral joints of the arm must move simultaneously at time-varying
rates. This is extremely difficult to accomplish if conventional
rate control (switches connected one-to-one to the joint motors)
is used. Some means of coordinating the joint motions is needed,
Work supported by NASA Contract SNPN~54 and NASA
Grant NGR-22-009-002.
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to resolve the useful command directions into the necessary joint
motions. For this reason, the method described here is called re-

solved motion rate control. Previous work in this area by others
is contained in /4/ - /10/.

The method allows commands to be exerted in a wide variety of
coordinate systems in addition to that shown in Figure 1, using
arms of any sufficient number of joints. Generally the minimum num-
ber of joints equals the number of command directions, but arms
with extra joints can be accommodated. The commands in Figure 1
can be called for independently, or superposed in any proportions.
For example, reach will occur without the hand’s orientation in
space changing, since reorientation is controlled by other commands.

Using the commands of Figure 1 as a base, we could mechanize
spherical coordinates with arbitrary center, cartesian coordinates,
motion along or about axes peculiar to some tool being grasped by

the hand, and so on.
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Fig. 1. Hand with hand-oriented Fig. 2. Hand coordinates
coordinate system related to V and

Computation of Resolved Rate for Hand-Oriented Commands

Figure 2 shows a manipulator hand with its attached coordi-
nate frame plus V, the velocity vector of that frame's origin, and
§2, the rotation rate vector about that origin. The frame 'x, ly,
lg represents the shoulder or base. The components of V along R,

L and S give the reach velocity, lift velocity and sweep velocity
respectively while Q's components give the rotation rates about
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these axes. A six element vector é representing the command rates
along hand axes may be written

H<

S =]-
&

Each component of é may be expressed as a sum of coefficients times
joint angle rates. Call the six joint angles 0 and the six joint
angle rates é. Then é and é are related by

§=3@-8 (2)

where each element in the six by six matrix J(9) depends on 8 and
is given by

gij = iR component of é per unit éj when all other

ék =0 for j # k (3a)

An equivalent expression for this is

th

gij = partial derivative of. the i positional or

angular coordinate of the hand with respect

to the 3™ joint angle (3b)

Having obtained 4, we may find the required é by inverting {4 to

6 =378 (4)

For example, if the user wants the hand to lift, (4) will ge-~
nerate the required 0. Since the commanded rotation rates are zero,
the hand will not rotate while reaching but will keep a fixed ori=-

entation in space.

Calculation of J by Vector Cross Products

The vector cross product method /11/ for computing J is in-

dicated in Figure 3. Acoordinate frame is assumed to be attached

to each joint, the jth frame at the jth joint, j =1, ... , 6, with

the hand frame being the 7th and frame 1 at the shoulder. Oj is

the origin of frame j. In Figure 3, the jth joint, the shoulder
frame and the hand are shown, together with the unit vector uy

along the axis of éj’ the vector §.7 from Oj to 07, and yj and Qj

which result from éj if all other 0’s are zero. Then

= u. e 0. 5
by x byy + 0Oy (5)
. =1u., - . (6)

V.,
-]
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where all vectors are expressed in frame 1. Using vectors yj and
Qj as is will allow us to obtain hand motion along or arcund frame
1 axes, useful, for example, for generating lift along a fixed
vertical axis. To obatin motion along or around frame 7 axes, we
need to express !j and Qj in hand coordinates. This is done by
multiplying by a 3 x 3 rotation matrix. The upper left 3 x 3 par-
tition of Qgg; is called 1Q7 because it expresses frame 7 vectors
in frame 1. Its transpose 1%? is 7g1, which expresses frame 1 vec-
tors in frame 7. Thus

1T Yj .

g7 *\--- +3=1, ... , 6 (7)

Q.
=i
expresses yj and 2. in hand coordintes. Thus the ’Y component of

o J
yj is Oj's contribution to reach, and the ’Y component of Q. is

éj's contribution to reach, and the ’Y component of Q. is 0.’s

contribution to twist. The column vector in (7), when divided by
éj’ gives the jth column of ¥ according to (3). Thus

Uy, X byy etc.

= 1T 7. _ _
J=1¢7

L)

A

]
t
L~ - = - (8)
!
|

Althcugh the Argonne E-2 has only turn joints, some manipu-
.th

lators have slicing joints. If the j joint is a slider then 0.
is fixed and Syr the slide coordinate, is a variable. The jth
column of § is then
%5
T . .
1 - - - =
%7 o /Sjl 3 1, ... 5 (9)
where V. = u, * s,
=3 —J J

and the lower 3 x 1 partition is zero. Ej is, as before, the unit

vector along Jg, the slide direction as shown in Fiqure 3.

Other Coordinate Directions

As an example of other possible coordinate directions which

*AEO7 is a 4 x 4 transformation matrix which converts +he position
and orientation of frame 7 into the position and orientation of
frame 1. See /3/ for details.
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can be mechanized, consider reach motion along a line of sight
from an eye to the hand. Let the eye be at 08' the origin of frame
8. Then the desired reach motion is to be along the vector bg-, and
will be obtained if the second row of J in (8) is replaced by
T

[ " A P
vi = (Y5 bgy)/8y for 3 =1, ... , 6 (10)

where conversion by ‘gg is omitted, and

yj =uy x Ej7 . éj as before .

1—?’-87 = unit vector along bg, expressed in
frame 1 coordinates

(QTQ) = dot product of a and b

Methods for Computing J

We have explored two methods for obtaining ) in real time.
Each has some advantages. The first method used was numerical
interpolation. For this g" was calculated at a number of joint
angle values, corresponding to a center position, a positive ex-
tension and a negative extension for each joint, the other joints
being centered when each joint was extended. This designated 13
points at which J~' was precalculated and stored. Values of J~!
at arbitrary points were computed by interpolation with good ac-
curacy. The value of this method lies in its use of read-only mem-
ory and fairly rapid computing time. Its disadvantage is that ac-
cuarcy is preserved only within a region of 0 values somewhat
smaller than the arm’s useful range.

The other procedure is to calculate Q'using (8) in real time.
This uses eraseable storage and takes slightly longer than the

Fig. 3. Illustration of vector Fig. 4. Definition
cross~product method of angle o
for computing J
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interpolation, but it allows almost unlimited motion of the hand.
It is the method currently in use.

Extension to Position Control

For position to position control we assume that the hand is
in some position and orientation such that b,,(@,) and Q7(gi)
are known, and that we desire the hand to move to a new position
whose b,-{8,) and lg7((_9_f) are given. Q. itself, the new joint an-
gles, is not assumed to be known. Information in the form 217(9f)
and ‘g7(§f) could come from a pointing system or other information
source describing the location and grasp direction of some object
we want grasped. Assuming that the hand is to move to the new po-
sition in a time interval T, we have

¥ = '¢T (@) [by;(8g) - by,(0)1/T (11)

first three components of é for use in eq. (4)

This says that V in hand ccordinates sweep, reach, and 1lift is
obtained from the initial vector difference in 917 (in shoulder
coordinates) projected into current hand coordinates by lgg(g).
The ecurrent © must be obtained either by reading the joint angles
or computing the integral

ddt (12)

[[o]
1
"I‘-CD
+
Oy,

The last three components of é are obtained by finding an
axis vector §i about which frame 7 should turn so as to change
'¢,(8,) into '€.(8.). A matrix Cy, exists which will accomplish
this rotation. These three matrices are related by

1€1(8g) = 'C5(8,)C;¢ (13)

so that
= 1aT 1
Rif = £7(84) "%7(8¢) (14)
The desired rotation axis & is the one vector in hand coordinates
which is unchanged during this rotation. That is
fiel = 2 as)

This means that § is the eigenvector of gif with unit eigenvalue.
The angle o through which frame 7 turns about axis Q may be obtai-
ned from examination of Figure 4. Here  is the axis vector and is




203

assumed to havebeen normalized to unit length. X and X’ are the ori-
ginal and final unit vectors along the X axis of frame 7, described
here for convenience in original frame 7 coordinates. o is measured
in the plane nermal to 2. The X component of { is Qx and by defini-
of 0 this is the same as the X’ component of @, Rysre

That is

2, = (27°X) = (27°X") = Q_, = first element of Q (16)

XI
The projection of X onto the plane normal to 2 is X - Q.02 and the
coresponding projection of X’ is X' - QXQ. The dot product of unit

vectors along these projections gives a:

Tiyr _
x - e )7 (x" - a0

cos a (17)

X - a.a| « |x" - 2]

(18)

(In case 0 lies along X, this formula is inapplicable. Replace X
with ¥ and X’ with Y’ in that case.)

Now that a is known, we need only scale £ by o/T and then
take this as the rotational rate vector for frame 7. It is already
expressed in frame 7, so its elements are directly the rates for
tilt, turn, and twist, thus providing the last three elements of
é. Barring numerical or servo errors, this é will carry the hand
to the new position and orientation. The calculation may be made
closed loop (hence less error prone) by defining a new gi periodi-
cally along the trajectory, calculating a new 217(91) and a new T
for use in eq. (11), plus a new Cif’ 2 and «a.

This procedure is an improvement over numerical search me-
thods /12/ or direct analytical attacks on the geometric equa-
tions /13/. The former can have convergence difficulties while
the latter are applicable only to certain types of arm configura-
tions.

Dynamic _Control of Arms

The previous sections have derived joint angle rate histo-
ries based on input commands and coordination constrains which are
purely kinematic. In this section we discuss methods by which arms
having inertia may be commanded to follow such trajectories. Pre~
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vious work in this area is limited to a few papers, notably those
of Kahn and Roth /14/, which considers the minimum time control
problem for a three-joint arm, and Monster /15/, who studied stabi-
lization and trajectory tracking problems in the Case Arm-Aid.

The main roadblock to the study of dynamic control of arms is the
sheer difficulty of obtaining the equations of motion. Progress
made by Sturges /16/ in computer-generation and, more important,
computer-simplification of these equations has made possible the
work described below. Computer equation generation requires great
amounts of computer memory at present, so that arms with more than
four joints have not yet been treated.

It is for this reason that a simple linearization nethod,
applicable to arms with any number of joints, is valuable /17/.
The equations of motion are obtained easily and quickly in numeri-
cal form by considering a linearization of Lagrange's equations.

The result is the following state variable representation:

(19)

e
]
+
[=

where

(20)

1}
]

50

is the 2N x 1 state vector containing angular and angular rate
deviations from nominal. All the submatrices in (19) are N x N.

I represents inertia, B is a diagonal matrix of damping terms at
each joint, K is a diagonal matrix of spring constants across each
joint, and 1 is an N vector of the torque sources. A simple and
fast computer program returns numerical expressions of the matri-
ces in (19).

Since (19) can easily be shown to be controllable, standard
optimal regulator theory can be used to stabilize it about this
nominal. Since this requires measurement of both §0 and 6@, it is
useful to know that the system is observable using only measure-

ments of ég.
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A trajectory control scheme was developed by assuming that
the above equations applied to the whole state rather that to de-
viations from nominal /18/. Optimal linear servo theory /19/ was
used to develop feedback gains and control functions. These were
then applied to stimulation equations representing all dynamic
nonlinearities. A typical result is shown in Figures 5a and 5b,
in which angles are in radians and torque in foot-pounds. Although

. the arm moves at a leisurely pace, the errors are quite small, as
are the required torques.

Conclusions

We have presented a unified theory of kinematic rate and po-
sition control of computer-driven arms, providing coordination in
a variety of coordinate systems. Progress in dynamic control is
also described and it is concluded that standard techniques are
capable of providing adequate performance when the speed of the
arm is not excessive.
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