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Abstract

In this paper the method for automatic (computer) forming
mathematical models and functional movements synthesis of active
spatial mechanisms consisting of open and closed kinematic chains
has been presented shortly.

Algorithm for correcting nominal trajectories has been pre-
sented, so system in simulation can perform tracking of the nomi-
nal trajectories exactly. Example of simulation has been done on
an antropomorphic configuration for producing artificial walk.

1. Introduction

In last decade at the Robotics Department of "M.Pupin® Insti-~
tute from Belgrade automatic methods for forming dynamic models of
active spatial mechanisms have been developed. These algorithms got
a form of genéral procedure for computer forming mathematical mo-
dels of spatial mechanisms of arbitrary complexity, and a couple
of methods have been developed based on recurrent relations.

In this way synthesized models are basic for the synthesis
of functional movements of system, as well as for synthesis of
control algorithms (1 - 5). For functional movements synthesis the
half-inverse Vukobratovié’s method has been used which can been
described as follows (4). One part of system has prescribed tra-
jectories which satisfy some functional requests. The dynamics of
the rest of the system has to be solved in such a way that this
"open" dynamics keep system in dynamic equilibrium with requested
boundary conditions and appropriate dynamic links.

In this way the needed functional movements could be given
without any simplification or linearization of the system and al-
so specific way of reduction of dimensionality of system has been
attained.

In the simulation has been requested that system tracks the
already synthesyzed nominal trajectories. All degrees of freedom
are "open" (there is no prescribed dynamics), and at perturbed re-
gimes stabilization is done by local and global feedbacks at powe-
red degrees of freedom. Control of moving of unpowered degrees of
freedom is done via powered degrees of freedom.
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2., Mathematical model of the system

Mathematical model of the system consists of two parts: model
of mechanical configuration and model of actuators. Mechanical con-
figuration can consist of some open or close kinematic chains in
the form (6, 7):

sY: p=H(Qg+ hiq, @ (2.1)

where is P - n dimensional vector of generalized forces, H - (nxn)
dimensional inertia matrix, h-n dimensional vector of Coriollis,
gravitational forces and other influences, g-n dimensional vector
of coordinates of degrees of freedom, n - number of degrees of
freedom.

Mathematical model of actuator is given in the form:
sty xt = alxl + £l 4+ plond (2.2)

wheie xi—n dimensional state vector of i-th subsystem, Al, Pl,
N(u™) - (3x3) system matrix, generalized force and nonlineariiy
of saturation type (input) of i-th actuator, respectivelly. £

and bl are ni - dimensional force amd control distribution vector.

Suppose m(<n) degrees of freedom are powered, while (n-m)
are unpowered. Model of overall system can be given by uniting s”
and S! models. In this purpose, united (overall) actustor model
can be written as: -

X, = Aex, + FeP, + B.N(u) (2.3)
where: x, = (xéT, ng,...,ng)T state vector of actuator system,
B = diag(l), F = atag(sh), nw) = vl nEd, .. ™) T.

For separating coordinates in q which belong to powered de-A
grees of freedom (q.), from these which belong to unpowered ones
(gqy) (nxn) matrix transformatic T, is applied so (8):

_ ¢ 77T
T +q = (g, ay) , (2.4)

Applying (2.4) on (2.1) gives:

Pc = Hcc‘qc t HcN.qN + hc (2.5)
PN = I'ch'qc * HNN'qN * hN (2.6)
where:
i
-1 Bee ' Hon _ by
Ty *HT," = --—-1---- and Tloh =]=--1, Hcc' HcN' HNc
HNc f HNN hn
and HNN

are matrices of appropriate dimensions, P, and Py are generalized

forces of powered and unpowered degrees of freedom, respectively.

It is supposed that PN are known in advance. Introducing transfor-
mation T such that
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G = Tex, (2.7)
it can be given

% = - - . -1 L - . . -1 -
X, = A-X ¥F (I Hy T F) {Hp['l‘ Asx +TeBeN(u) J+H,  Ho (Po-h )+

+hc}+B°N(u) (2.8)

4 = -1 - . - - eTel -1 oTeAs «Te«Bs
qN = HNN PN HNC T[A xc+F (Im HP TeF) (Hp TeA xc+HP T«B+N(u)+

+ H__+H X (p, -h

" Han (PN N)+hc]+B-N(m)—hN) (2.9)

g?;re:iﬂg = (Hcc-HcN-H;; Hy ), iy is unit matrix of aproppriate
ensioh.

3. Functional movements synthesis, nominal
control and simulation

Based on mechanical part of mathematical model (2.1), has
been synthesized functional movements of active svatial mechanisms.
One part of the system has prescribed dynamics. From matrix H and
vector H (which are formed automatically), certain coefficients
have been taken out and form the reduced system of differential
equations. By solving this system with requested boundary condi-
tions, dynamics of the rest of the system is obtained.

Let dynamics of the whole mechanical part of the system be
written as: p Doy ¢ D, s g G, 2 Gy
qco No Co No Co No

United system (2.7), (2.3) can be written in the compact
form as follows:

% = A(x) + B(x)-N(u) (3.1)
_ T 1 .1 n-m en-m,T .
where is x = (xc, s Qgre--r9y + 9 )~ state given vector of
N N iT, T

united system, x_ = (x1T, x2T, . x0T yhere x* = (¢, &, ¢iT)

for i = 1,2,...,M. Vector ¢1(+) is of diminsion (ni-2Y anf consists
of the rest of the state yector (except gq. and &%) of the i-th po-
wered degree of freedom. A(x) is vector flinction®of order us, 8(x)

is matrix of size (NSxm), where NS is the order of the whole system.

Let suppose nominal control can be obtained by solving (2.2)

if the nominal trajectories 9o v g r 9g r 9y 7 9y ¢ 9y are known,

20 o o (e} o (o}

o’*

the system (3.1) with initial conditions x(to)=x_and nominal con-

trol Uy, dges nQt provide that system tracks nominal dynamics

9o r 9y ¢ 4 + 4,, . This has been caused by cumulative
"o o %o o Mo

error of numerical integration because of matrix inversion of dif-

ferent dimensions.

and these solutions are ¢é, ¢ ..,og and u,-. But, integration of

r g9 ,'q'
NO (]

On Fig. 1. the flow chart for the algorithm has been shown
for nominal control correction for tracking the nominal dynamics.
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Fig. 1. Flow-chart of the algorithm for nominal
control correction
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In block 3, at each integration stg?, ggrrect;on of the H(n) has
been done, based on the q_. , dy » 1, ¢2,...,¢M.
o N, [} o o
In this way not only cummulative error of integration becau-
se of matrix inversion of different dimensionality has been avoi-
ded, but also all round-off errors.

Numerical integration of system (3.1) with initial conditi-
ons x(0)=x,, and nominal control W(u) (memorized at block 5) pro-
vide exact tracking of dynamic nominal trajectories memorized at
block 5.

Simulation of moving the overall system (3.1) has been done
on digital computer. System was requested to track nominal trajec-
tories (memorized at block 5). At the level of perturbation, cor-
rection are introduced via local and global feedbacks, so control
structure can be presented as (9)

. i i i

ulr) = u® @) + o ) + € (v (3.2)
where u®(t), uL(t), uG(t) and u(t) are nominal, local, global and
total control, while index "i" denatos the corresponding actuator.
Local feedback is introduced by state vector of certain actuator,
while global can be done by: 1) moments (generalized forces) in
mechanism joints, 2) reaction forces by mechanism and environment.

4. Example of active spatial mechanism for producing
artificial antropomorphic gait

In this part application of the general algorithm for func-
tional movements synthesis will be shown, applieZ? on the active
spatial mechanism for producing artificial antropomorphic gait
(10-12) . Fig. 2 shows an illustrative kinematic scheme of the an-
tropomorphic system. The ball joints are replaced by apropri«te
number of kinematic pairs of the fifth class.

Mechanism parameters in Fig. 2. are:

r - starting position of the first segment in absolute coordi-
1 nate system,

e - unit vector of the first joint axis with respect to absolute
coordinate system.

The further vectors are given with respect to internal coor-
dinate system of each segment.

éi - unit vector of joint axis
fi i vector from the center of the "i"-th joint to the center
' of the gravity of the "i"-th segment

fi i+l T vector from the center of the i+l-st joint to the center
’

of the "i"-th segment, of some chain.

Kinematic scheme of the antropomorphic system could be divi-
ded into three open kinematic chains. First chain represent the
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Fig. 2. Kinematic scheme of the arthopomomorphic walking system
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legs (segments 1-14), the second upper part of the body and left
arm (segments 15-18), and the third one, right arm (scgments 19-20).

All input data about the configuration are in one matrix.

Beside these informations about the mechanism some other are
also necessary: number of segments, number of chains, number of
basic chain (chainwhichis connected to the first segment), number
of basic segment (segment from wich next segment g¢ontinues), type
of segment (body or cane), specificity (if axis el of the "i"-th

joint, and vector rii.i in assembling phase coincides), masses
’

and moments of inertia, internal coordinates and their derivatives.

During walking, system supports at one leg, after that at
both, and at the other one, so legs are forming open and closed
kinematic chains. According to input data algorithm calrulates
matrix H(q) and vector h(g, &) from model (2.1). This model des-
cribes mechanism at single support phase.

Suppose, at the dquble support Ehase on the other feet are
acting unknown forces R and moment M , which are characteristic
of the closed chain support:

T * * * *x * * T
o = (o, 02,...06) = (Rx, Ry, Ro M, My, Mz) (4.1)
Model (2.1) for this case is
He§+Beog+h=P 4.2)

where matrix H and vector h are formed as in single support phase,
but matrix B is multiplied by all elements which depend of o. Mat-
rix B is formed simultaneously with H and h.

Denote known generalized coordinates as (qo}. unknown as (qx).

In this case to the model (2.1) or (4.2) are requested boundary con-
ditions:

9 _ q
fi)-wfe.

Transformation matrix [Wlgives connection between state vec-
tor at begining and at the end of integration interval T. Under as-
sumption that the perturbations are small, the starting conditions
correction is given in the form:

b% L -1 s Xx_
{}Ea;{}; = ([ul-[w]) ([W]{;§;€}; - {:q;'}}) (4.4)

where [U] is sensitivity matrix wiih submatrix expressed as Jaco-
bian“s.

In the single support phase algorithm is automatically adju-
sted. for solving the model (2.1) with boundary conditions (4.3),
but at the double support phase for system (4.2) with boundary con-
ditions (4.3).

For standard numerical interqgration methods it is necessary
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to calculate right - hand sides of differential equations. Calcu-
lation of right-hand sides of differential equations which descri-
be motion of unknown part of the system is realized automatically,
just based on information about: prescribed dynamics, additional
degrees of freedom (necessary condition for closing the first
chain) and known generalized forces.

Correction of initial cornditions is based on global and lo-
cal iterative procedure. Global use gradient method applied on
performance index formed as norm of deviation from boundary con-
ditions (4.3) according to matrix [W].

Local iterative procedure is based on correction of these
conditions according to (4.4).

In this example the dynamics of the low extremities was pres-
cribed and hands were fixed on the "chest" of the antropomorphic
mechanism. "Open" or compensating dynamics consist of moving in
frontal (angle 6) and saggital (angle Y¥) plane and keep system in
dynamic equilibrium. For prescribed dynamic parameters S, T and p
are introduced. Parameter S is used for adjusting size, and T for
duration of one step, what enables us to control speed of walking
and to keep the same type of gait. Parameter p denotes duration of
double support phase corresponding to full step.

5. Numerical results

In this paragraph a part of results obtained for antropomor-
phic configuration shown on Fig. 2 will be presented. Dashed line
denotes centers of gravity of fictive segments (introduced just for
representing a joint with two or three degrees of freedom with a
set of joints of the fifth class), and sizes of vectors fi i and

’

f{ i4+1 of these segments are small (10_8m). Other parameters of the
meéhanism are same as in (4). The joints: 4, 5, 6, 11, 12, 14, 15,
16, (Fig. 2) are powered with DC Globe Industries Division motors
of TRW INC type 102A200-8. Joints 1 and 2 are degrees of freedom
between foot and floor, and the rest of unpowered joints are con-
sidered as "frozen".

Based on nominal dynamics before correction and actuator
mathematical model (2.2), nominal control N(u(t)) has been calcu-
lated i.e. voltage on DC motor poles. With such nominal control
and for undisturbed initial conditions integration of system (3.1)
has been done. Euler s method has been used with integration step
0,01875 (s). On Fig. 3 and 4 has been shown deviations of simula-
tion results from nominal; on Fig. 3 are shown diferences of mo-
ments under foot (in saggital and frountal plane which should be
zero), and differences in moments for knee and hop joints. On Fig.
3a,b,c are shown differences of position, speed and acceleration
for joints: 4 (ankle), 6(hip), 15 and 16 (conpensation movements
of the trunk). Simulation results prove that not only functionali-
ty of the movements has been disturbed, but also instability of
the system occurs. Such dynamics cause the ZMP (zero moment voint)
to move out of area covered with the supporting foot. That means
that such nominal trajectories before correction do not allow the
system to track them (in the case without initial disturbances) .
After correction, system follows them exactly.
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Correction was done according to algorithm on Fig. 1 on
computer EI H6/63 in single precision with 7 digits mantissa.
Nominal dynamics before and after correction coincide, at least
on 4 significant digits.

6. Conclusion

For more precise study of control structures of active spa-
tial mechanisms such nominal control has to be synthesized that
system can follow the nominal trajectories exactly for the undis-
turbed initial conditions. Nominal control calculated by direct
solving actuator subsystems (2.2) does not satisfy such condition.
It has been cause by cummulative error of numerical integration
because of matrix inversion of different dimensionality. Algorithm
for correcting nominal control so that system can track nominal dy-
namics, has been given in Fig. 1. In this way cummulative error has
been avoided, so nominal trajectories before ard after corrections
differ at each discrete point just for the matrix inversion error.
Such nominal provides exact tracking of the system.
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